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EFFECT OF VELOCITY IN ICING SCALING TESTS

David N. Anderson*
Ohio Aerospace Institute
Brook Park, Ohio 44142

Abstract

This paper presents additional results of a study first
published in 1999 to determine the effect of scale
velocity on scaled icing test results. Reference tests
were made with a 53.3-cm-chord NACA 0012 airfoil
model in the NASA Glenn Icing Research Tunnel at an
airspeed of 67 m/s, an MVD of 40 um, and an LWC of
0.6 g/m’. Temperature was varied to provide nominal
freezing fractions of 0.8, 0.6 and 0.5. Scale tests used
both 35.6- and 27.7-cm-chord 0012 models for */3- and
Ys-size scaling. Scale test conditions were found using
the modified Ruff (AEDC) scaling method with the
scale velocity determined in five ways. Four of the
scale velocities were found by matching the scale and
reference values of water-film thickness, velocity,
Weber number and Reynolds number. The fifth scale
velocity was simply the average of those found by
matching the Weber and Reynolds numbers. The
resulting scale velocities ranged from 85 to 220% of the
reference velocity. For a freezing fraction of 0.8, the
value of the scale velocity had no effect on how well
the scale ice shape simulated the reference shape. For
nominal freezing fractions of 0.5 and 0.6, the best
simulation of the reference shape was achieved when
the scale velocity was the average of the constant-

Weber-number and the constant-Reynolds-number
velocities.
Nomenclature
A, Accumulation parameter, dimensionless
b Relative heat factor, dimensionless
c Model chord, m
Cpws Specific heat of water at the surface
temperature, cal/g K
Nt Water-film thickness at leading edge, m
Ky Modified inertia parameter, dimensionless
LWC  Cloud liquid-water content, g/m’
M Mach number, dimensionless
MVD  Water droplet median volume diameter, um

*Senior Research Associate, Member AIAA

NASA/CR—2003-211828

n Freezing fraction, dimensionless

e Leading-edge radius of airfoil, m

Re Reynolds number of model, dimensionless

Res Reynolds number of water droplet,
dimensionless

ty Static temperature, °C

Lot Total temperature, °C

Vv Air velocity, m/s

We Weber number based on droplet size and water

properties, dimensionless

(0] Droplet energy transfer terms in energy
balance, °C

Ay Latent heat of freezing, cal/g

ol Ice density, g/m’

0 Air energy transfer terms in energy balance,
°C

T Accretion time, min

Introduction

This paper presents the results of a continuation of a
1998 study published in 1999' to determine the effect
of scale velocity on scaled ice shapes.

To minimize test-section blockage in icing tunnels, it is
often necessary to test reduced-size models. Scaling
methods are thus required to determine scaled test
conditions that will simulate the full-scale icing
encounter and produce the same non-dimensional ice
shape. Similarity parameters have been identified
which best describe the important phenomena of icing
physics. Scaling methods™ have been developed by
selecting those similarity parameters that appear to have
the most influence on ice accretion, and requiring that
the parameters have the same value for both scale and
reference tests. The phenomena important to icing
include the flowfield approaching and around the
model, the droplet trajectories, the quantity of ice
accumulation, the surface heat balance and, possibly,
phenomena related to the dynamics of surface water on
the model. For rime ice, because water freezes on
impact, only the first three of these phenomena affect
the ice shape.

The flowfield can be simulated by matching scale and
reference values of Re and M, by using a model whose



non-dimensional coordinates are the same as the full-
scale (reference) article and by setting the scale angle of
attack equal to the reference. For icing encounters, the
speeds involved are usually low such that M should
have little effect and is neglected. In the past, Re has
usually been ignored by arguing that any ice accretion
will trip the boundary layer and the flow will then be
independent of Re. However, Bilanin® advocated
including Re in icing scaling analyses, and recently, the
study of reference 1 used Re as an optional scaling
parameter.

Similarity of droplet trajectories and, therefore, droplet
collection efficiencies, can be obtained by matching the
modified inertia parameter, K, of Langmuir and
Blodgett.”

Similarity of ice accumulation results from a match of
the accumulation parameter, A4,:

Lwcy
4 = T

° 2rle Pi (1)

Here, 7/, is the leading-edge radius of the model. The
length scale used to compute the values of all of the
similarity parameters in this study was twice the
leading-edge radius. For the NACA 0012, the leading-
edge radius is 1.58% of the chord.

The energy balance at the surface is based on the work
of Messinger.” The energy balance can be written in
the form,

Cp,ws 0
et

where # is the freezing fraction; ¢, the water energy
transfer parameter; 6, the air energy transfer parameter;
and b, the relative heat factor, defined by Tribus, et al
Equation (2) provides additional similarity parameters
for scaling, but only three of the four are independent.
For this study, only », ¢ and 6 will be considered.

Finally, some understanding of surface dynamics can
provide still more similarity parameters. Two of these
are the Weber number, We, and the non-dimensional
water-film thickness, /y,./c. Kind® has also identified
parameters, but for the present study, these will not be
considered. For this investigation, We was based on the
droplet size. An experimental correlation for water-
film thickness was given by Feo and Urdiales:’

h fitm 12
——— oc LWC"~(Re)

c

71/4(R65)15/4(We)79/4 (3)
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This correlation was based on tests of the effect of rain
on aircraft performance; thus, the water droplets were at
least an order of magnitude larger than those
experienced in conditions described by FAA FAR 25
Appendix C. The LWC’s in the Feo and Urdiales study
were also higher than those of interest here.
Consequently, equation (3) may not be applicable to
Appendix C icing. Because there is no other data
relating water film thickness to icing parameters,
however, equation (3) will be used with reservations.

From the above discussion, then, eight scaling
parameters can be considered: Re, Ky, 4., n, ¢, 6, We
and hg,/c. After the reference conditions for the test to
be simulated have been selected along with the scale-to-
reference size ratio, there are five test conditions for the
scale test that need to be established: the static
temperature, velocity, cloud droplet size, cloud liquid-
water content and the icing time. In icing tunnels with
altitude capability, the scale test-section pressure is a
sixth condition that must be determined. The present
work was performed in a sea-level tunnel, so pressure
was established by ambient conditions.

Ruff’ performed tests in the AEDC R-1D icing tunnel
to evaluate the importance of the parameters, K, 4., n,
¢, and Oto scaling. He found that the scaled ice shapes
agreed best with reference shapes when all five
parameters were matched to the reference values. This
approach to scaling is known as the Ruff (or AEDC)
Method. Because the R-1D allows altitude simulation,
Ruff’s work included the calculation of the scale test-
section pressure in addition to temperature, MVD, LWC
and time. The scale velocity is selected arbitrarily in
the Ruff Method. The Ruff Method has also been used
in sea-level tunnels in a modified form in which 6 is
ignored and just the remaining four parameters are
matched. Scale velocity is chosen by the user for this
modified Ruff Method, as well.

In Ruff’s experiments, the scale velocity was often
simply equated with the reference value. This is a
practical approach, and it coincidentally insures that 6,
b and M will match between the scale and reference
situation. Although some more recent studies have
been done with velocity selected by matching We'*'",
until the study of reference (1), the choice of scale
velocity and its effect on scaling results has not
received much attention.

Reference (1) reported a series of '4-size scaling tests
performed in the NASA Glenn Icing Research Tunnel.
Five sets of reference conditions were tested with the
full-size model (53.3-cm-chord NACA 0012 airfoil).
Tests with a 26.7-cm-chord 0012 were made with scale
conditions determined by the modified Ruff method.



(Because the IRT is a sea-level tunnel, the parameter 0
was ignored.) Five possible scale velocities were
determined for each reference case. These were found
by matching either hy,/c, velocity, We, Re, or the
average of velocities found by matching We and Re.
This average-J method has no physical basis, but it was
used to assist in spotting possible trends with velocity.
The matching of hg,/c was referred to as the Feo
method; it produced a scale velocity of about 85% of
the reference. The scale velocity for the constant-We
approach was about 130%, for the average-V, about
175%, and for the constant-Re, about 220% of the
reference. The scale velocities for the constant-Re
method in some cases were higher than the tunnel
capabilities permitted and, in others, produced total
temperatures above freezing. Even the average-V
method sometimes gave total temperatures above
freezing. Thus, not all of the five sets of reference
cases could be tested with all scale velocities.

The study of reference (1) found that for tests with
freezing fractions higher than 0.8, including some tests
with rime ice, scale velocity had little effect on scaled
shapes. For a freezing fraction of about 0.5, there was
better agreement between the scale and reference ice
shapes as the scale velocity increased, as long as the
scale total temperature was below about —2°C. At a
freezing fraction of 0.3 a clear trend could not be
established since even the average-velocity method
gave a total temperature above 0 °C.

Additional tests were performed in 1999 to obtain
supplementary data and to investigate some of the
questions raised by the 1998 study reported in reference
(1). Because that previous study ignored the scaling
parameter 6, the present work included some tests to
evaluate whether results would be different if 6 were
used instead of ¢ as part of the system of equations to
determine scale conditions. While constant ¢ results in
simpler equations to solve, constant 6 produces a lower
scale total temperature. In addition to the Y2-scale
results, a few sets of ice shapes will be shown for
scaling from a chord of 53.3 cm to 35.6 cm (¥4 scale).
NACA 0012 models were again tested in the NASA
Glenn Icing Research Tunnel at 0° angle of attack.
Along with results from the 1999 tests, this paper will
also present additional results from 1998.

Reference Conditions

All reference tests were made with 53.3-cm-chord
models. The nominal test conditions are shown in
table I. Three reference cases, designated 110, 111 and
112, were taken from the study of reference (1). Each
case has a different freezing fraction due to the different
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Table I. Reference Test Conditions
Reference Model, 53.3-cm-Chord NACA 0012
Reference Airspeed, 67 m/s
Reference MVD, 40 um
Reference LWC, 0.6 g/m’
Reference Spray Time, 11.2 min

Case b for n
°C °C

110 -13.9 -11.7 0.8

111 -11.1 -8.9 0.7

112 -8.4 -6.1 0.5

temperature. The airspeed, droplet size, liquid-water
content and spray time were the same for all cases. The
reference shapes from reference (1) were used again for
this study. Actual recorded test conditions for both
reference and scale tests will be given with the ice
shapes. The values of some of the scaling parameters
to be given in this paper may differ from those
previously reported due to changes in the calculation
routines used.

Test Description
NASA Glenn Icing Research Tunnel

The facility and hardware used are shown in figure 1.
Figure 1(a) is a plan view of the NASA Glenn Icing
Research Tunnel (IRT).'*" The IRT has a test section
width of 2.7 m and a height of 1.8 m. It has a
refrigeration system that allows accurate control of the
test-section temperature from —40 to 4 °C. A water
spray system with ten spray bars simulates the
conditions in a natural icing cloud. The test-section
cloud droplet size, MVD, and liquid-water content,
LWC, depend on spray-bar air and water pressures. The
relationships among these pressures, the tunnel airspeed
and the cloud properties are established periodically by
a series of tunnel calibration tests.'* The cloud has
been calibrated over a range of test-section airspeeds
from 22 to 156 m/s and droplet median volume
diameters from 14 to 50 um. Two sets of spray
nozzles, the Mod-1 and Standard, are used to provide
different ranges of liquid-water content. Depending on
the nozzle set, the airspeed and the droplet diameter, the
test-section liquid-water content can be controlled from
less than 0.2 to over 5 g/m’. The Standard nozzles were
used for the 1999 tests, while the Mod-1’s were used in
1998.

The IRT spray system includes a water valve at each
nozzle, and water is recirculated prior to the start of the
spray. Spray-bar air and water pressures can thus be



established and stabilized
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diffuser as well as from
the outside. The cold-
room temperature can be
controlled to permit ice
studies off line. A three-
dimensional scanner in
the cold room is available
for digitally recording the ice-shape coordinates of ice
accretions. Although the ice produced in this study was
scanned, the shapes to be presented here were obtained
from two-dimensional hand tracings of the ice cross
section.

Test Models and Procedures

The same NACA 0012 airfoil models were used in both
the 1998 and 1999 studies. Chords were 53.3 cm
(reference model), 35.6 cm and 26.7 cm. Each was
mounted vertically, at 0° angle of attack, in the center
of the IRT test section. The models were machined
from solid aluminum. All had a span of 61 cm and
were placed between end plates as shown in figure 1(b).
The models’ mid spans were located on the tunnel
centerline (midway between floor and ceiling of the test
section). The five horizontal lines marked around the
leading edge of the model indicate the mid-span and
positions 2.5 and 5 cm above and below mid-span. Ice
shapes were recorded only at the mid-span and 5-cm-
above locations for the 1999 study and at mid-span,
+2.5 cm and 5 cm above mid-span for the 1998 tests.
In this paper, only the mid-span shapes will be shown.

The test temperature and airspeed were first established,
then the spray-bar air and water pressures were set and
stabilized. To initiate the spray, the water valves were
opened and the spray timer started. At the completion
of the desired time, the spray was turned off and the
tunnel fan stopped. For the 1999 tests, the model was
removed from its stand and carried to the cold room
where the surface coordinates were recorded with the 3-
D laser scanner. After scanning, a thin heated
aluminum plate was used to melt horizontal slots
through the accreted ice at specific span-wise locations.
The ice shapes were traced by hand onto cardboard
templates inserted into these slots in the ice. Two
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North C onlrol Room

6-ft by 9-ft
Test/Section

Cold -

Room

(b) 53.3-cm-Chord NACA 0012 Model in IRT
Test Section.

Figure 1. Test Facility and Model.

models of each chord were fabricated so that while the
ice accretion was being scanned and traced in the cold
room on the first model, a second model could be
installed in the test section and tested. Finally, the
model in the cold room was cleaned. When the test
with the second model was completed, the clean model
was reinstalled in the test section and the procedure
repeated. The 1998 procedures were described in
reference (1). They were similar to those described
above except that most ice shapes were recorded from
the model in the test section.



Following the test, the ice-shape tracings were digitized
to provide a permanent record of each shape. The ice
shapes to be shown in this report were plotted from
these 2-D digital records.

Average Test Conditions

Tunnel and cloud conditions were recorded at 1-sec
intervals for tests with the 26.7- and 35.6-cm-chord
models and at 2-sec intervals for the 53.3-cm-chord
model. Averages of the 1- or 2-sec readings over the
spray period were made for each instrument used. The
test-section total temperature at any moment was the
average of the readings of eleven type-T thermocouples
located on the turning vanes upstream of the spray bars.
The test-section velocity was found from the averages
of the pressures from two pitot-static probes on
opposite walls at the entrance to the test section. The
MVD and LWC were calculated from the averages of
the ten spray-bar air pressures and water-air differential
pressures. The conditions reported in this paper are
these instrument averages averaged over time. These
conditions will be tabulated as part of the ice-shape
comparisons in figures 3 to 6. The scaling parameters
shown in these figures have been computed from these
average test conditions.

Uncertainty

Estimates of the uncertainty in the reported average
conditions were made by considering fluctuations of the
values with time, possible instrument errors including
calibration, uncertainties in tunnel calibration of MVD
and LWC, and differences in measurements from one
location to another in the test section. From this
analysis for the conditions of the tests reported here
total temperatures are probably known to within
+ 1.5°C, velocity, = 2.5%, MVD, = 11% and LWC,
+ 12%. There is no absolute standard for drop-sizing
instruments; therefore, the use of different instruments
or operators to measure the clouds tested could produce
MVD’s outside this range of uncertainty.

The uncertainties in the scaling parameters were
determined from the above test-condition uncertainties.
K, is thus estimated to be known within about + 22%,
A, £ 12%, n £ 10%, b + 12%, ¢ = 3%, 0 = 3%, Re
3%, We = 12% and M % 3%. At this time, the effect on
the ice shape of varying scaling parameters by these
magnitudes is unknown.

Results and Discussion

Considerations of Nozzle Type and Span-wise Position

Some of the ice-shape comparisons to be presented will
be made between tests made in 1998 and 1999 using
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Figure 2. Comparison of Results From Tests Using
Mod-1 and Standard Nozzles. ¢, 26.7 cm; tq;,
—11 °C; V, 88 m/s; MVD, 24 um; LWC, 0.77
g/m3; 7, 3.7 min.

different nozzle sets. To determine consistency
between the results for the two types of nozzles, some
tests from 1998 were repeated in 1999. Figure 2
compares the results of a scale test from 1998 using the
Mod-1 nozzle set with one run in 1999 at the same
conditions but with the Standard nozzles. The two ice
accretions displayed only minor differences, and these
were typical of the shape variations observed when
icing sprays are repeated with the same nozzle. The
quality of the shape agreement indicated by figure 2
was observed with several other repeat tests that were
made. It was concluded that the 1998 and 1999 results
can be directly compared.

Reference (1) showed comparisons of ice shapes traced
at different span-wise locations from 2.5 cm below the
mid span to 5 cm above. No significant variations in
ice shape were seen. Similarly, in the tests made in
1999, no meaningful differences between the mid-span
shapes and those recorded 5 cm above mid span were
observed. Thus, small errors in locating the span-wise
positions for the tracings should have had no effect on
ice shape.

15-Size Scaling with Rime Ice

When there is sufficient convective heat transfer to
absorb all the latent heat released, water freezes
immediately on impact to form rime ice. Consequently,
a description of the heat balance at the surface is
unnecessary, and, with no liquid water on the ice,



dynamics of a liquid surface are irrelevant. For this
situation, only the reference accumulation and inertia
parameters, 4. and K, have to be matched by the scale
test, and any method to choose scale velocity should be
equally valid. Reference (1) presented results of
scaling to %2 size with scale velocities using the Feo,
constant-velocity, constant-We and average-velocity
methods. The four scale tests produced evidence that
rime shapes should not change with scale velocity.
However, some rime ice shapes in reference (1) were
smaller than expected due to an inconsistency in the
tunnel LWC calibration over the range of velocities
tested. That calibration has since been revised, and the
1999 tests used the latest IRT calibration. No
additional rime results will be shown here.

145-Size Scaling at Nominal Freezing Fraction of 0.8
fig. 3

The ice shapes are shown in the plots with non-
dimensional coordinates. The reference shape is drawn
with a gray line and is repeated for comparison with the
scaled shapes in each portion of the figure. Figure 3(a)
shows the scaled shape which resulted from testing with
the Feo scale velocity; figure 3(b), the constant-
velocity; figure 3(c), the constant-We; and figure 3(d),
the average of the constant-We and constant-Re
velocities. The ice shapes shown in figures 3(a), (b)
and (c) have already been reported in reference (1).
The average-velocity result in figure 3(d) adds a higher
velocity scale test than what was given in reference (1).
The first column of numbers below the plots of ice
shapes in figure 3(a) gives the reference test conditions
and scaling parameters. The scale test conditions are
listed under the corresponding portion of the figure.

There are usually three attributes of an ice shape that
need to be evaluated when judging the effectiveness of
scaling. They are the quantity of ice accreted, the limits
of accretion, and the size and location of significant
features such as horns. The scale velocity had little
effect on any of these characteristics of the scale ice
shape at this freezing fraction, although the Feo
velocity, just 85% of the reference, gave a flatter
leading region than the shapes formed at higher
velocities. None of the shapes exactly reproduced the
leading-edge features. The accumulation parameter, 4.,
varied by about +7% from test to test, and the quantity
of ice appeared to be insensitive to this variation.

15-Size Scaling at Nominal Freezing Fraction of 0.6
fig. 4

Figure 4 gives scaling results for constant velocity
(fig. 4(a)), constant We (fig. 4(b)), average velocity
(fig. 4(c)), and constant Re (fig. 4(d)). As with results
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discussed above, all were made with the water energy
transfer parameter, ¢, held constant. A fifth scale test
was made with the Re again matched, but with the air
energy transfer parameter, 6, instead of ¢, matched to
the reference value (fig. 4(e)). The use of 6 in place of
¢ results in a scale total temperature that is significantly
reduced. Reference (1) noted that one of the practical
problems of using constant-Re scaling is that the total
temperature can be near or above freezing.
Temperatures near freezing were found to produce
scaled ice shapes that had little resemblance to
reference shapes.

The relative sizes of the scaled shapes appear to be
slightly larger than the reference, but that may have
been because the scale accumulation parameter was as
much as 9% higher than desired. Accretion limits are
sometimes difficult to define precisely from traced ice
shapes, but for the scale results of figure 4, there
appeared to be little effect of scale velocity on the
accretion limit of the main ice shape. Scale velocity
had a noticeable effect on the horn position, however.

Increasing scale velocity from 67 m/s (constant velocity,
fig. 4(a)) to 87 m/s (constant We, fig. 4(b)) produced only
minor differences in the scale horn position. When the
velocity was increased to 117 m/s (average velocity,
fig. 4(c)), the main scale horn angle and size conformed
closely to the reference. The scale feathers also
matched in size, although in the reference case, feathers
were observed further aft than in the scale test.

The two constant-Re scaled tests (Figs. 4(d) and (e)),
produced main ice shapes which approximately
matched the reference size and shape in the horn region,
but failed to simulate the size or extent of the feathers
which formed aft of the main shape in the reference
test. Reference (1) speculated that the high scale
velocity which results when Re is matched may strip
small feathers from the surface early in their formation,
thus preventing substantial feather growth from taking
place. It is not evident from the results of figure 4 that
there is any advantage in using scale velocities higher
than the average of those obtained by applying constant
We and constant Re.

There does not seem to be a significant difference
between the scale shapes formed using either constant ¢
(fig. 4(d)) or constant 6 (fig. 4(e)) when Re is matched.
This suggests that either of these parameters may be
equally effective.

15-Size Scaling at Nominal Freezing Fraction of 0.5
fig. 5

The nominal freezing fraction for case 112 was 0.5. The
reference ice shape featured the horns typical of glaze



ice with small feathers farther back on the airfoil.
Figure 5 shows the five scaled ice shapes that resulted
from testing with scale velocities ranging from those for
the Feo method to the constant-Re method. It can be
seen from figure 5 that all scale velocities produced
approximately the correct quantity of ice, and accretion
limits appeared to be nearly the same as for the
reference shape. However, as the scale velocity
increased, the horns on the scaled shapes moved
forward. The best match of the scaled and reference
horn shape was obtained when the scale velocity was
the average of the constant-We and constant-Re
velocities. The horns for the constant-Re scaling
projected forward of the reference horns.

The 1999 scale test results for the Feo, constant-V,
constant-We, and average-J methods given in figure 5
were in close agreement with the 1998 results reported
in reference 1. For the 1999 tests, the constant-Re
conditions were found by matching 6 since the
constant-¢ approach, used in 1998, produced a scale
total temperature slightly above freezing. The use of
constant 0 produced a scaled shape (fig. 5(e)) which,
although not a perfect match, was more consistent with
the reference shape than was the constant-¢ scaled
shape of 1998.

The table of conditions below the plotted shapes
indicates that the scaled tests had accumulation
parameters as much as 9% higher than the reference
and freezing fractions as much as 17% lower than the
reference. These variations are greater than desired, so
caution should be observed when forming conclusions.

25-Size Scaling at Nominal Freezing Fraction of 0.5
fig. 6

Scaling size to only %5 the reference permits testing
with constant Re at more moderate scale velocities than
are needed for “2-scale testing. A series of tests were
made scaling from 53.3-cm to 35.6-cm chord, using the
same reference case as for the tests shown in figure 5
(case 112, with a nominal freezing fraction of 0.5). Five
scale velocities were again tested, using the Feo,
constant-velocity, constant-We, average velocity and
constant-Re methods. The constant-Re scaled
conditions were determined with ¢ matched to the
reference value.

The results are shown in figure 6. Because the scale
size was closer to the reference, the differences between
the scale and reference shapes are not as pronounced as
those seen in figure 5. The relative quantity of ice and
accretion limits for the scaled tests matched the
reference for all scale velocities. However, the same
effect of scale velocity on ice shape can be seen in both

NASA/CR—2003-211828

figures 5 and 6, with the scale horns moving forward as
velocity increased. The best match of scale and
reference ice shapes was again found for the average
velocity method, and the scale horns were again
somewhat too far forward when constant Re was
applied.

For the scale tests of figure 6, the accumulation
parameter varied from the reference by less than 2%
and the freezing fraction by about 4%. Because of the
improved parameter matching over that in figure 5, the
figure 6 shape comparisons may have more credibility.
In any case, the conclusions from the two figures are
consistent: (1) The scale velocity has little effect on
quantity of ice or accretion limits, and (2) the best
match of scaled horn size and position was obtained
when the scale velocity was chosen as the average of
the constant-We and the constant-Re velocities.

Concluding Remarks

Scaling tests were performed in the NASA Glenn Icing
Research Tunnel using a 53.3-cm-chord NACA 0012
model for reference tests with 35.6- and 26.7-cm-chord
scale models. Scale test conditions were found using
the Ruff scaling method for sea-level tunnels along with
five methods to select scale velocity. Four of these
methods were based on insuring that some physically
based parameter had the same value for both scale and
reference conditions. The first method matched the Feo
water film thickness, the second, the test-section
velocity, the third, the Weber number, the fourth, the
Reynolds number. The fifth method averaged the
velocities found by matching the Weber number and by
matching the Reynolds number. These methods gave
scale velocities that ranged from about 85% of the
reference to about 220% for '2-scale testing and from
90% to 155% for the */3-scale tests. For some tests the
effect of matching the air-energy transport parameter, 6,
instead of the water-energy transport parameter, ¢, was
evaluated.

The observations and conclusions from this study are:

1. Limited testing showed no effect of whether
constant ¢ or constant 8 was used in the scaling
equations. Constant ¢ uses simpler calculation
routines, but constant 6 gives a lower scale total
temperature when the scale velocity is higher than
the reference.

2. The quantity of ice was adequately simulated by
any of the scale velocities tested. Accretion limits
were difficult to define precisely, but appeared to
be approximately simulated using all of the scale
velocities considered.



3. For a freezing fraction of about 0.8, there appeared
to be no effect of scale velocity on scale ice shape.
This observation is consistent with the results of
reference (1).

4. For nominal freezing fractions of 0.6 and 0.5, the
scale horns moved forward as scale velocity
increased. The best scaling resulted from
averaging the constant-We and the constant-Re
scale velocities. For a freezing fraction of 0.5, the
constant-Re method produced ice shapes whose
horns projected forward beyond those of the
reference shape.

One-half-scale tests with nominal freezing fractions of
0.6 and 0.5 and two-thirds-scale tests with a nominal
freezing fraction of 0.5 all indicated that average-
velocity scaling gave the best simulation of the
reference ice shape. This method of choosing the scale
velocity has no physical basis, but its success could
possibly indicate that both We and Re play nearly
equally important roles in the physics of ice accretion.
Thus, while these two parameters cannot be
simultaneously matched using a practical scaling
method, the average-velocity approach may provide an
acceptable compromise. It is also possible that some
other physical parameter is coincidentally satisfied, at
least approximately, by the constant-velocity method.
In any case, before final conclusions can be reached,
tests with additional reference conditions and different
scaling ratios are needed to confirm the observations
reported here.
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